研究課題	管内自走環境認識用試作システムの研究(M100)	技術課題(ブレークスルーポイント)と解決法	M112	
班 九砞越1	マイクロ波エネルギー供給・通信のシステム化研究(M112)	技術課題 (ブレークスルーポイント) 解決法	解決法	
研究機関名 (株)デンソー		無索エネルギー供給技術		
要約		エネルギー投入部からアンテナ部までの 距離やマシン両門方向の向きが変化 シンの円周方向の回転に対す		
管内自走環境認識用試作システムへの無索エネルギー供給及び通信機能を実現するため、配管を 導波管として扱い、マイクロ波を用いてエネルギー供給と通信を行うことを提案し、直径10mmの配 管内でエネルギーと通信の2種類のマイクロ波に対応できるアンテナの開発及びマイクロマシンに 搭載可能な小型、低消費電力のマイクロ波回路モジュールの開発を行った。 その結果、24GHz周波数帯域でエネルギー供給と通信の両立が可能な直径9.5mmの2重パッチマイクロ波アンテナを実現した。また、2重パッチマイクロ波アンテナと整流回路および変復調回路を立体的に実装した小型のマイクロ波回路モジュールを実現した。 これらにより、直径10mmという細い配管内において、同じ周波数帯域のマイクロ波を用いたエネルギー供給と通信を両立を世界で初めて実現した。また、このアンテナ部分に光電変換デバイスを一体化して、光とマイクロ波の同時エネルギー供給にも成功した。		・配管途中への減衰器の設置と供給マイクロの周波数を500MHz 程度の範囲でスイープすることで配管を進むマシンに対して定在波の響を低減		
		成果 2次プロト試作 50mm	J	
		φ9.5mm ‡	φ 9. 5mm ‡	
		マイクロ波エネルギー供給 ・通信デバイス H6年度 H7年度 H8年度 H9年度		
イスを開発する 波により無線で 移動デバイス、 号の受信でした。 第1期での管 波のエネルギ	意認識用試作システムの機能を実現するためのマイクロ波エネルギー供給・通信デバることが目的。マイクロ波エネルギー供給・通信デバイスの役割と機能は、マイクロ にとが目的。マイクロ波エネルギー供給・通信デバイスの役割と機能は、マイクロ には合きないたエネルギーを受け取り、試作システムに搭載される環境認識デバイス、 制御回路の動作に必要なエネルギーを供給するとともに、制御のためのコマンド信 は認識デバイスからの画像信号等の情報の送信といった試作システム外部との通信 はいて無線で行うこと。 内でのマイクロ波の伝播特性のシミュレーションおよび実験による評価、マイクローを電力に変換するためのショットキーバリアダイオードの成果を応用して、試作シ であためのマイクロ波エネルギー供給・通信用デバイスを研究開発。	性能 性能 直径: φ 14.5 mm 全長:15 mm 全長:15 mm 全長:15 mm 14.5 mm 14	パッチアンテナ 機デパイス一体化 1.5 mm mm l.5 ~ 222.5GHz l.用) に (通信用) mW	
目標		科学技術庁発明100 選を受賞。 今後の展開	بران باید. 	
マイクロ波エネルギーと通信データの分離を図り、移動・環境認識・通信の各機能に必要なエネルギーを供給するともに通信を行うことが目標。 上記目標を達成するため、エネルギーと通信の2種類のマイクロ波に対応できるアンテナを開発。また、内径φ10mmの配管においてマイクロ波を高効率で伝播させるために必要な20GHz ~25GHz程度の周波数に対応可能なマイクロ波通信技術、マイクロ波デバイスを小型化するための実装技術を開発。 マイクロ波を用いた無索のエネルギー供給の研究例はあるが、配管内の無索エネルギー供給を実現した例はない。また、同じ周波数帯域でエネルギー供給と通信を両立した例はない。		・小型の無線のエネルギー供給、通信技術として、無線タグや携帯情報機器への応用を図る。		